

William Paterson University
Department of Computer Science

Microsoft Visual C++ .NET
Tutorial

Spring 2006 Release 1.0

 2

Microsoft Visual C++ .NET

Tutorial
Spring 2006 Release 1.0

I. Introduction

This tutorial teaches the basics of the Integrated Development Environment (IDE) of

Microsoft Visual Studio .NET. It introduces in detailed steps how to enter, compile,

link, and execute a C++ program in the IDE. Using two simple examples – a single

file and a multiple-file program – the beginning students should be able to learn

quickly the needed skills to carry out programming assignments in CS230, CS240,

and other and other CS courses.

II. The IDE Environment

The IDE is Graphical User Interface or GUI-based command center where all the

tools needed for software development are accessible through menus and tool bars.

Although Microsoft .NET supports many different programming languages, we focus

our discussion on C++.

III. Basic terms and definitions

1. Application: refers to application software or program that performs certain data

processing task such as computing the GPAs of a list of students.

2. Console application: is character-based (none-graphical) application where textual

input and output are displayed in a console window. Console window is also

known as a DOS box, a window with a black background. When a console

application is running, the program normally receives input from the keyboard

and sends its output to the DOS box as streams of characters.

3. Solution, project, and file:

a. Solution: In Visual Studio .NET, a “Solution” is synonymous with an

application. In general, a “Solution” consists of one or more “Projects” that

collectively perform a particular data processing task. For example, an

accounting program or “Solution” may contain two projects; one processes

account-payable and the other account-receivable.

b. Project: a “Project” consists of one or more related files; together these files

perform certain data processing tasks.

c. File: Any named object or document stored in a folder is referred to as a file.

Besides it name, a file may have an extension which identifies the type of the

file. For example, files with .cpp extension denotes C++ source file, files with

.h extension represent header files, and files with .exe extension are

executable files. When a project is processed by the Visual C++ .NET, the

system generated many intermediate files of various types for house-keeping

purposes. For our purpose, but we are we will focus our attention on .cpp and

.h files.

The relationship between Solution, projects, and files is shown in Figure 1.

 3

Figure 1 – Relationships between Solution, Projects, and Files (Koneman)

IV. Notations used in the following tutorials:

1. Menu items appear in boldface. Two or more items selected or clicked in a row

are separated by arrows “->”, e.g., when we say click File -> Save As…, we

mean click File then click Save As…, where File and Save As… are items in the

File menu.

2. Words or phrases other than menu items that are displayed in windows or in

dialog boxes appear in bold and italicized, e.g., Solution Explorer, New Project,

Open Project, etc.

3. Words entered into a dialog box by the user are italicized without being bolded,

e.g., HelloWorld is the name entered by the user for the Solution as well as for the

Project in our first tutorial.

4. Program code is shown is shown in Courier New font; all others are in Times

New Roman font.

V. Summary of C++ program development steps: Assuming you have a new program to

compile and run and the program is ready to be typed in, you need to go through the

following steps. These steps may not make much sense to you at the moment but they

will once you finished the tutorials. You may come back here for a review and print

out this page as a quick reference.

1. Launching the Microsoft Visual Studio .NET

2. Setting the Profile for C/C++ program development

3. Creating an empty new C/C++ Project by selecting

a. Select Win32 as the Project Type

b. Select Win32 Console Project as the Template

 4

c. Specify Disk drive and path; then enter a name for a folder in which all

files associated with the project are to be stored.

4. Entering C++ source code into file or files

5. Compiling, linking, and executing the project

6. Printing the source code and the output in the console window

7. Debugging basics

a. Syntax errors

b. Runtime errors

c. Logic errors

 5

Tutorial I: Single-file project:

We use a simple program that displays a “Hello World” message on the screen as our demo. The

source code will be entered into a file named HelloWorld.cpp.

1. Launching Microsoft Visual Studio .NET

From the desktop, double click on the icon of MS Visual Studio .NET. If the .NET icon

is not on the desktop, click start (in the task bar of the Windows) -> Program ->

Microsoft Visual Studio .NET 2003 -> Microsoft Visual Studio .NET 2003. The

system displays the main window of the Visual Studio .NET as shown is Figure 1.

Figure 1 - The main .NET window

Note that the title bar displays Microsoft Design Environment [Design] – Start Page;

it will change once we enter a name for the project later. As shown, the main .NET

window contains a title bar, a menu bar, a standard tool bar, and a build tool bar. New

tools bars can be added to and existing ones removed from and the main window by

simply right clicking anywhere in the tool bar area; from the pop-up menu, you may them

select or de-select them. The standard and build tool bars used frequently. The debug

tool bar, which is not shown in Figure 1, is useful to debug or locate errors in a program.

The main window may contain several smaller windows and each serve a particular

purpose. As shown in Figure 1, the three smaller windows displayed are the Solution

 6

Explorer, the Dynamic Help, and the Start Page windows. The Solution Explorer

window allows you to locate and work with individual files of you program while

Dynamic Help allows you to get online help quickly. Smaller windows may be deleted

from the main window. For example, you may choose to remove the Dynamic help

window by clicking the Close button at the upper right corner of this window. If this

window is not on the screen, you can display it by clicking Help -> Dynamic Help.

When many small windows are opened, the screen may be cluttered, especially if you

do not have a big monitor. Instead of closing down some windows, you may want to use

the Auto Hide feature associated with most of the small windows to avoid the cluttering

of the screen. Notice that there is a “push pin” icon to the left of the Close button in the

title bars of the Solution Explorer and Dynamic Help windows. When the push pin

points downward, the associated window is displayed as shown in Figure 1. By clicking

on it, the push pin points to the left and the window shrinks to an icon or “hidden” on the

left of the main window, as shown in Figure 2. By moving the cursor over it, the window

is restored; by moving the cursor away from the window, the window automatically

shrinks to an icon.

Figure 2 - Demonstration of the Auto Hide feature where both the

Solution Explorer and Dynamic Help windows are shrunk to icons.

 7

2. Setting the Profile for C/C++ program development

Click the My Profile tab as shown in Figure 2. From top toward bottom of the drop-

down lists, select Visual C++ Developer; Visual C++ 6 for Keyboard Scheme; Visual

C++ 6 for Window Layout; and Visual C++ for Help Filter and the remaining ones as

shown in Figure 3. Note that this is a one-time operation and there is no need to do it

again if the settings have not been changed.

Figure 3 - Setting the Profile for C/C++ program development

3. Creating a Naming an Empty Project

Click the Projects tab in the Start Page window and then click the New Project

button at the lower left of the window, the New Project dialog box as shown in Figure 4

is displayed. Click the More button at the lower left corner to make sure the dialog box is

fully displayed. A dialog box is by itself a small window; it is used by the system to

prompt user to enter information. In the Project Type pane on the left, open the Visual

C++ Projects folder by clicking the “+” symbol to its left and select and Win32 as

Project Type. In the Templates pane on the left, select Win32 Console Project as the

template. Remember that, as discussed in the introduction section, a console project is a

project whose input and output are streams of characters and are displayed in the “DOS”

box.

 8

Enter Hello World as the name of project in the Name box and specify where you

would like to have the project stored by directly entering drive label and path name in the

Location box. Alternatively, you may use the Browse button to do the same. In this

demo, we use the Browse button and select C:\Visual Studio .NET Projects as the place

to store our project, where C: is the drive label and Visual Studio .NET Projects is the

path name. A path name is actually a folder in which files are stored. The folder may

have been previously created; if it was not, the system will be created automatically for

the project. Note that you may choose any drive and name a folder any way you like.

Also notice that we have left Create directory for Solution unchecked, meaning the

Solution contains only a single Project (defined in the introduction section), and

therefore, share the same folder. For very large software where the Solution may contain

multiple Projects, you may want to check the box and enter a name for the Solution.

Figure 4 - New Project dialog box.

Click the OK button, the .NET display the following Win32 Application Wizard –Hello

World window as shown is Figure 5.

 9

Figure 5 - Win32 Application Wizard window - Overview

Click the Application Settings tab to display the window shown in Figure 6 and make

sure that the Empty project box is checked!!!

Figure 6 - Win32 Application Wizard window – Application Settings.

 10

Click the Finish button to display the main .NET window shown in Figure 7. Notice that

the title bar of the main window is changed from Microsoft Design Environment

[Design] – Start Page to HelloWorld – Microsoft Visual C++ [Design] – Start Page.

Also note that we have clicked the push pin icon in the title bar of the Solution Explorer

window to turn off the Auto Hide feature so that the window is fully displayed. In the

Solution Explorer window, there are 4 folders, the main HelloWord and three sub-

folders: the Source Files, Header Files, and Resource Files folders which are empty at

the moment. For single-file project, source code is always stored in the Source Files

folder as a file with a .cpp extension. For multiple-file project, all files with .cpp

extension are stored in Source Files folder and all programmer-defined header files are

stored in the Header Files folder; Resource Files folder is not used for console

applications.

Figure 7 - Four folders have been created in the Solution Explorer and window

4. Adding source file to the project and entering C++ source code for the file

Right click anywhere on the Source Files folder, a pop-up menu is displayed as shown in

Figure – 8 below.

 11

Figure 8 – Pop-up menu upon right clicking anywhere on Source Files

Select Add in the pop-up menu and click Add New Item…, the system displays the Add

New Item – HelloWorld dialog box as shown in Figure 9 below. Select the Code folder

in the Categories pane on the left and C++ File(.cpp) in the Templates pane on the right,

then enter HelloWorld.cpp in the name box.

 12

Figure 9 – The Add New Item dialog box

Accept the default location c:\Visual Studio .NET Projects\HelloWorld\ and click the

Open button. The new HelloWorld.cpp file has now been added to the Code folder in the

Solution Explorer folder and the empty file edit area appear on the right with

HelloWorld.cpp shown in the tab. We are now ready to enter the C++ source code to the

blank area.

Figure 10 – The HelloWorld.cpp had been added to the Source Files folder

 Enter source code as shown in Figure 11 below.

 13

Figure 11 – Source code has been entered in the code editing area

5. Compiling, linking, and executing the project

Compiling, linking, and executing are normally performed in three separate steps through

menu manipulations. There is a simple way to do the three steps all at once by clicking

the Start Without Debugging icon, a purple exclamation symbol in the Build tool bar.

The Build tool bar is shown in both Figures 10 and 11; if it is not displayed, simply right

click anywhere in the tool bar area to display the pop-up menu and then click on Build to

select it. We now click on the purple exclamation icon, the system displays following

Microsoft Development Environment dialog box:

Figure 12 - Microsoft Development Environment dialog box

Click Yes button, the system goes through compile and link steps and produces a

summary report about the build process in the Output window shown in Figure 13 below.

As the message indicates, the build process is successful since both compiling and linking

are without errors.

 14

Figure 13 – The Output window showing a summary report of the Build process

Since there is no error in compiling and linking, the project is automatically executed and

results produced and displayed in the console or DOS window as shown in Figure 14

below. Note that the console window displays results or outputs from the execution of

your program HelloWorld.exe whereas the Output window of Figure 13 displays the

results or outputs of the compilation and linking process.

Figure 14 – Output from the execution of the HelloWorld.cpp program

5. Printing the source code and the output in the console window

To print the source code in the project editing window, simply click anywhere on the

window then click on File -> Print… -> OK.

To print the output result in the console window involves the following steps:

a. Click on the drive icon (C:\ in this demo) on the left end of the title bar of the console

window to display the pop-up menu then click on Edit -> Mark as shown in Figure

15. A rectangular shaped marker is displayed.

 15

Figure 15 – Display the marker in the console window.

b. Drag the marker to select the output as a block of text (“Hello World.” in this demo)

as shown in Figure 16.

c. Click on the drive icon again to display the pop-up menu. In the menu, click Edit ->

Copy to copy the selected block of text to the clipboard which it can be paste to any

word processor such as Microsoft Word where it can be printed.

 16

Tutorial II: Multi-file project:

Multi-file or separate file project: In the previous demo, the project consists of a single

HelloWorld.cpp file. In practice, a C++ programming project may contain many .cpp and .h files.

It is desirable to have these files separately compiled and debugged before assembling them into

a project. In this tutorial, we demonstrate how separate .cpp and .h can be assembled, compiled,

linked, and executed together. Although not as detailed as the previous tutorial, we decide to

show these steps not to avoid confusion and the need to refer back frequently.

We use a time project for the demonstration. The time project displays time of the day in both

standard (0 – 12 AM or PM) and military (0 – 23 without AM or PM) formats. The project

contains three separate files: time.h, time.cpp, and timeMain.cpp. The header file time.h contains

the declaration or interface of the time class; time.cpp contains code that implements all the

member functions of the time class; and the timeMain.cpp is the driver function that uses the time

class to display time in both military and standard formats. The detailed code is listed in the

appendix I.

1. Launching Microsoft Visual Studio .NET:

From the desktop, double click on the icon of MS Visual Studio .NET. If the .NET icon

is not on the desktop, click start (in the task bar of the Windows) -> Program ->

Microsoft Visual Studio .NET 2003 -> Microsoft Visual Studio .NET 2003. The

system displays the main window of the Visual Studio .NET as shown is Figure 1.

Figure 1 – The main window of Visual Studio . NET

 17

2. Setting the Profile for C/C++ program development:

Click the My Profile tab as shown in Figure 2. From top toward bottom of the drop-down

lists, select Visual C++ Developer; Visual C++ 6 for Keyboard Scheme; Visual C++ 6

for Window Layout; and Visual C++ for Help Filter and the remaining ones as shown in

Figure 2.

 Figure 2 – Setting the profile

3. Creating an empty new Win32 Console Project

Enter time as the name for the “Project” and timeSolution as the name for the “Solution”;

specify C:\Visual Studio .NET as the drive and directory that will be used to stored all the

files for the time “Project” and the timeSolution solution. As shown in Figure 3 below,

the time project folder will be created at C:\Visual Studio .NET\timeSolutioin\time. It is

noted that in this demo, the “Solution” (timeSolution) contains only one “Project” (time);

in general, a complex “Solution” or application may contain more than one project.

 18

 Figure 3 –The New Project dialog box

Click the “Create directory for Solution” box and then the “OK” button, the system

displays the Win32 Application Wizard – time dialog box as shown in Figure 3 below.

Figure 3 – The Win32 Application Wizard – time dialog box

 19

Click the “Application Settings” tab to display the dialog box shown in Figure 4 below.

Figure 4 – The Application Settings tab of the Win32 Application Wizard

Make sure the Empty project box is checked and then click the Finish button to display

the main Visual Studio .NET window as shown in Figure 5 below. Let’s take a look at

the Solution Explorer - time pane on the left of the main window where the Solution

Explorer tab has been clicked. Notice the hierarchical organization of the solution in the

display: the timeSolution solution contains 1 project, namely, the time project and it

contains three empty folders. We will create and store all .cpp files in the Source Files

folder and all .h files in the Header Files folder as illustrated below.

Figure 4 – Three empty folders for the projects has been created

 20

4. Adding files to the newly created but empty project

As mentioned in the beginning of this tutorial, the time application contains three files:

time.h, time.cpp, and timeMain.cpp. We first add time.cpp file to the Source Files folder

and then type in its source code. We then repeat the steps for the timeMain.cpp and the

time.h files. Note that in general, all the .cpp files are added to the Source Files folder

and all the .h files to the Header Files folder.

a. Adding time.cpp file to the Source Files folder

Right click anywhere on the Source Files and then click Add -> Add New Item… to

display the following dialog box (you may click on ADD Existing Item should the file

have previously been created) as shown in Figure 5.

Figure 5 – Adding .cpp files to the Source Files folder

 21

The system displays the Add New Time – time dialog box as shown in Figure 6 below.

Click on Code icon in the left Categories pane and select C++ File (.cpp) in the right

Template pane; enter time as the name for the file (do not type .cpp, as the system will

automatically appends the .cpp extension).

 Figure 6 – Select Categories and Templates and enter filename

Click the Open button the system display the screen shown in Figure 7. Notice that the

time.cpp file appears under the Source Files folder. Also shown in Figure 7 is the blank

area on the right for entering and editing the source code for the time.cpp file.

Figure 7 – Code entering/editing area on the right of the main .NET window.

 22

Type in the C++ source code for time.cpp file as shown in Figure 8 below (only partially

visible; the detailed code is provided in Appendix I).

 Figure 8 – Source code for the time.cpp has been entered as shown.

b. Adding timeMain.cpp file to the Source files folder:

Repeat the above steps timeMain.cpp to the “Source files” folder and then type in its

code.

c. Adding time.h file to the Header Files folder:

Repeat the above steps shown to add time.h to the Header Files folder and then type

in the code. The following screen shows all three files have been properly added to their

respective folders. In the code entry area, the time.h tab has been clicked so the window

shows the code of the time.h file. Now we have ready to compile, link, and execute our

program.

 23

Figure 9 – All three files has been created; source code for the time.h is displayed.

5. Compiling, linking, and executing the three-file project

a. To build or compile the Solution:

Click Build Solution in Build menu or press F7, the system displays a floating

Output window shown below (Note: depending on how it is configured the Output

window may be docked right next to the .cpp and .h files. The window displays the

messages about the compilation and linking process. If your project contains syntax and

linkage errors, diagnostic messages are displayed. In our demonstration, two .cpp and one

.h files are successfully compiled and the system has produced the time.exe load module

or file for execution.

Figure 10 – The Output window shows successful compilation and linking

 24

b. To execute the load module:

Click Debug -> Start Without Debugging or press Ctrl+F5, the load module

(time.exe file) is executed and the result is displayed in the console or DOS box as shown

below:

Figure 11 – The console or DOS window displays the result of execution of time.exe file.

Note that as demonstrated in tutorial I, steps 5.a and 5.b can be consolidated into a single

step by clicking the Start Without Debugging icon, an exclamation symbol in the Build

tool bar. Again, if the Build tool bar is not displayed; simply right click anywhere in the

tool bar area and then click Build in the pop-up menu to activate it. It is possible that the

Start Without Debugging icon is not present in the Build tool bar. To display it, right

click the tool bar area and then click Customize… The system displays the Customize

dialog box shown in Figure 12 below:

 Figure 12 – The Customize window.

 25

In the box, click the Commands tab and select Debug in the Categories pane on the left

and locate the exclamation mark in the Commands pane on the right; drag the

exclamation symbol and drop it in the Build tool bar.

6. Printing the source files and the output results in the console window:

a. To print the source files: click File -> Print in the menu bar and click to print all .h

and .cpp files.

b. To print the output displayed in the DOS box: click the DOS icon at the left end of

the title bar to show the popup menu below.

Click Edit -> Mark to display a little blinking rectanglar marker at the upper left

corner in the console or DOS window. Drag the rectangle to mark or highlight the

block of text as shown in below, cut and paste it to a blank MS Word or WordPad

document and print the document from there.

 26

Appendix

The source code for time.h, time.cpp, and timeMain.cpp used in Tutorial II (Deitel & Deitel)

time.h file:

// Declaration of the Time class.

// Member functions are defined in time.cpp

// prevent multiple inclusions of header file

#ifndef TIME_H

#define TIME_H

// Time abstract data type definition

class Time {

public:

 Time(); // constructor

 void setTime(int, int, int); // set hour, minute, second

 void printMilitary(); // print military time format

 void printStandard(); // print standard time format

private:

 int hour; // 0 - 23

 int minute; // 0 - 59

 int second; // 0 - 59

};

#endif

time.cpp file:

// Member function definitions for Time class.

#include <iostream>

using std::cout;

#include "time.h"

// Time constructor initializes each data member to zero.

// Ensures all Time objects start in a consistent state.

Time::Time() { hour = minute = second = 0; }

// Set a new Time value using military time. Perform validity

// checks on the data values. Set invalid values to zero.

void Time::setTime(int h, int m, int s)

{

 hour = (h >= 0 && h < 24) ? h : 0;

 minute = (m >= 0 && m < 60) ? m : 0;

 second = (s >= 0 && s < 60) ? s : 0;

}

// Print Time in military format

void Time::printMilitary()

{

 cout << (hour < 10 ? "0" : "") << hour << ":"

 << (minute < 10 ? "0" : "") << minute;

}

 27

// Print time in standard format

void Time::printStandard()

{

 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)

 << ":" << (minute < 10 ? "0" : "") << minute

 << ":" << (second < 10 ? "0" : "") << second

 << (hour < 12 ? " AM" : " PM");

}

timeMain.cpp file:

// Driver for Time1 class

// NOTE: Compile with time1.cpp

#include <iostream>

using std::cout;

using std::endl;

#include "time.h"

// Driver to test simple class Time

int main()

{

 Time t; // instantiate object t of class time

 cout << "The initial military time is ";

 t.printMilitary();

 cout << "\nThe initial standard time is ";

 t.printStandard();

 t.setTime(13, 27, 6);

 cout << "\n\nMilitary time after setTime is ";

 t.printMilitary();

 cout << "\nStandard time after setTime is ";

 t.printStandard();

 t.setTime(99, 99, 99); // attempt invalid settings

 cout << "\n\nAfter attempting invalid settings:\n"

 << "Military time: ";

 t.printMilitary();

 cout << "\nStandard time: ";

 t.printStandard();

 cout << endl;

 return 0;

}

